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The paper gives the accurate equations of adsorption isotherms for a heterogeneous sur- 
face with the following distribution functions of sites with respect to the heats of adsorption: 

N, = exp (-g/g,) (a) 

N, = exp k/g,) (b) 

(g = heat of adsorption; g, = a constant). It describes a method of determining adsorption 
isotherms in the case of symmetric and nonsymmetric distribution functions with a max- 
imum, as obtained by combining distribution functions (a) and (b). 

The corresponding relationships between heats of adsorption and surface coverages are 
given. 

INTRODUCTION 

The theoretical interpretation of the 
Freundlich adsorption isotherm was given 
by Zeldovitch (I) in 1935 on the basis of a 
model of a heterogeneous surface with a 
distribution function of sites with respect 
to the heats of adsorption: 

Ng = exp (-s/sm) (1) 

where g = heat of adsorption and g, = a 
constant. 

However, the problem of the theoretical 
form of the Freundlich equation and of the 
corresponding site distribution function is 
still being discussed in the literature. 

The solution given by Zeldovitch (I) and 
later by Temkin and Levitch (2) Halsey 
and Taylor (3), and Halsey (4) on the basis 
of the distribution (1) is approximate since 
they performed integration over heats of 
adsorption from plus infinity to minus in- 
finity. 

Therefore the theoretical equation of the 
isotherm has a number of serious defi- 
ciencies; for instance, it gives infinitely 

large coverage for p + ~0 (p = gas pres- 
sure). 

Sips (5,6) chose to construct an “im- 
proved” isotherm by selecting mathemati- 
cal expressions which reduce to the 
Freundlich isotherm at low pressures and 
unity at infinitely high pressures. Applying 
to these expressions a method similar to 
that of Temkin and Levitch (2), Sips found 
the appropriate site distribution functions, 
which differed from (1). It followed from 
(1-6) that Freundlich adsorption isotherms 
could be obtained for surfaces with dif- 
ferent distribution functions of adsorption 
sites with respect to the heats of adsorp- 
tion. 

Thus, one cannot use Freundlich’s 
approximate theoretical equations to give a 
sufficiently correct idea of the properties of 
the adsorbent surface. 

A more reliable conclusion as to the na- 
ture of the distribution of sites with respect 
to the heats of adsorption based on experi- 
mental data can be drawn only with more 
accurate theoretical equations of adsorp- 
tion isotherms for heterogeneous surfaces. 
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For this it is necessary, in the first place, 
to perform more accurate integration of the 
initial isotherm equations corresponding 
both to the site distribution function (1) 
and to other elementary site distribution 
functions. 

This paper presents and discusses the 
accurate (in the mathematical sense) equa- 
tions of the adsorption isotherm’ corre- 
sponding to the distribution (1)’ and of 
Temkin’s (8) negative-power isotherm cor- 
responding to the distribution function3. 

Assuming gU= m, gl=--ccl and I % 
ew 

(-d&J& = gm, we obtain Freun%ich’s 
theoretical isotherm (1-4). Perform more 
accurate integration. 

Denoting RTlgm = CL, exp (g, - 
d/g, = L p. ew (-g,/RT) = pzL7 p. exp 
(-g,/RT) = p1 and substituting ( p,/p) exp 
(-g/RT) = x we obtain 

“-‘I( 1 +X)) dx 
e=p 

/ 

(P/PlYr (x 

1 - L-1 

Ng = exp ( s/s,). (2) 

1. THE ACCURATE EQUATION L-l 
OF THE ISOTHERM 

CORRESPONDING TO 
THE DISTRIBUTION It has been found (IO) that 

FUNCTION (1) 

I 

u 
The mean coverage 19 of a heterogeneous 

XI*-’ & 
o 1+x 

surface is 
uw - / .  ,  l 

I . (6) 

=-p&p; pt I;-u). (7) 

Thus 

where 0, is the coverage of sites with the 
heat of adsorption g, as given by Lang- 
muir’s equation 

f?, = [1 + (P,/P) exp (-g/RT)lV’ (4) 

Here p. = exp (AS/R) where AS (assumed 
to be independent of 0,) is the entropy 
change in adsorption corresponding to 
0, = 0.5. g, and g, are the boundary points 
of the distribution curve. 

Write the initial isotherm equation as 
follows: 

e= ‘2~ 
I 

ew (-g/g,) 
“1 

[1 + (P,/P) exp (-dRT)lV’ 

& /I g”ew (-g/g,)&. (5) ‘I( 

I The consideration is based on the Langmuir 
equation (lateral interaction is ignored). 

’ A short communication was published [Ref. (7)]. 
’ A short communication was published [Ref. (9)]. 

e = F(l,P.; P + 1: -PAP) 
I-L-’ 

_ F(l,PL; P + 1; --Pulp). (8) 
L-1 

F( 1 ,p; p + 1; -pi/p) is a hypergeometric 
function expressed by the infinite series 

F(l,P.; P + 1; -PAP) 

The series (9) converges only for 
pi/p < 1. Since p, is always greater than 
pu, Eq (9) yields the finite value of 0 only 
in the range of p > pl, i.e., for very high 
coverages. To obtain the isotherm equa- 
tion in the range of p < pl it is necessary 
to find the analytical continuation of the 
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TABLE 1 

Pressure 
range Isotherm equations 

P < Pu 
@ = WP3 . M(cL - WV,1 - /.G 2 - PL; -I+,) _ 

1 - L-1 

WPuW(P - 1)1N,1 - CL; 2 - CL; -PlP.Y 
L-l 

Pu < P < PI 
o = (w-/sin WWPJ p + WP~~P - 1)l F(l,l - P; 2 - p; -plpJ 

1 - L-1 

F(1d.G p+ 1; -Pu/P) 
L-l 

P ’ Pl 
8= F(l,CL;IL+ I;--P,lP) F(l,p; I.L+ 1; -A&/P) 

1-L-l - L-l 

a @lPJ”(l - L-Y - @/p,,)‘“(L - 1)-’ = 0. 

hypergeometric function4 (9) into the In its turn, the series (10) converges only 
range of p < pie atp/pi< 1. 

Below we give the final result of the 
calculation (7) made on the basis of Ref. 
(II). The analytical continuation of the 
hypergeometrical function F( 1, p; 1 + CL; 
-p/pi) is the function 

Thus, the isotherm can be described by 
three equations, each of which yields a 
finite value of 8 only within a restricted 
pressure range: 

++ F(l,l -CL; 2-/J; --P/Pi), 

where 

F( 1,l -jl; 2 -/A; --P/Pi) 

n=m 
= x (-1)” l- cL (‘)“. (10) 

n=o n+l-jL pi 

4 The hypergeometric functions tend to 1 as 
pi/p + 0 [Eq. (9)] and p/pi + 0 [Eq. (IO)]. Already at 
(p,/p) = 0.1 F(1, CL; p + 1; -pi/p) is equal to 0.991 
(p=O.l); 0.968 (~~0.5); 0.947 (/~,=1.3). At 
(p/pi) = 0.1 F(1, 1 - p; 2 - p; --p/pi) is 0.956 
(p=O.l); 0.961 (~=0.3); 0.968 (fi=O.5); 0.991 
(~=0.9); 1.01 (p= 1.1). The only exceptions are 
cases where the values of p are in the vicinity of in- 
tegers 2, 3, 4, . . . , n. Thus, the hypergeometric 
functions on whose properties all these calculations 
are based can often be taken equal to 1. 

All the equations are listed in Table 1. 
These equations completely describe the 
isotherm from p = 0 to p = 03 and from 
T=Oto T=m. 

The isotherm equation for low cover- 
ages can be reduced to the Henry equa- 
tion. The isotherm equation for high cover- 
ages can be reduced to the equation 8 = 
1 - (P/(P-t 1)) (PllP). 

Consider the range pu < p < pl more 
carefully. The coverage value corre- 
sponding to the lower boundary of this 
range depends on g, and p values, but the 
coverage value corresponding to the upper 
boundary of this range depends exclus- 
ively on p. These (boundary) values of 0 
are as follows: 0.94 (p = 0.1); 0.85 
(p = 0.3); 0.79 (p = 0.5); 0.7 1 
(/A = 0.9); 0.66 (p = 1.3). 

In this important pressure range we ob- 
tain: 
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8 = (w/sin 1~7~) (P/PA~ 

1 - L-1 

+ (Pl/-- 1) (P/P11 F(l,l --l-G 2-p; -Ph)- F(1J-G 1 +p; -Pu/P). (11) 
1 - L-1 L-l 

The upper limit g, (as p,) does not figure 
in the two first terms of this Eq. and the 
lower limit does not figure in the third 
term. 
Therefore Eq. (11) can be easily simpli- 
fied. 

At p + pU F in the third term can be 
taken equal to 1: 

($I= (1 -L-l)-’ 

+ p - p F 1,1--p; 
0 ( CL-1 Pl 

2 - p; -E. -L-l 
Pl 1 1 . (12) 

Further, if L is large enough, this term may 
be neglected, which corresponds to taking 
the upper limit equal to infinity 

+ p - f- F(l,l -P;~-/..G-~/~J. ( 1 /J--1 PI 
(13) 

In many cases (if p % pl) F in Eq. (13) 
can be taken to be equal to 1. Hence, the 
following equation may often be regarded 
as the sufficiently accurate approximation: 

8=& JL w  +-+f (14) 
( 1 sin w ~1 

Equation (14) may be interpreted as an 
algebraic sum of two terms: Freundlich’s 
and Henry’s. 

At p < 1 Freundlich’s term is always 
the larger; the smaller the ratio p/p, and 
the smaller p, the better is the Freundlich 
equation satisfied. 

At p > 1 the Henry term is always the 
greater; the Henry equation is the better 

satisfied, the larger is Al. and the smaller the 
ratio p/p,. 

Theoretical isotherms calculated by Eq. 
(13) (i.e., with the condition g, = to) are 
given in Fig. la. 

FIG. la. Adsorption isotherms for surface with ex- 
ponential distribution of sites with respect to the 
heats of adsorption. Dependences of log 0 on log 
(p/p,) correspond to distribution function (1). Depen- 

dences of log (I - 0) on log (p,/p) correspond to dis- 
tribution function (2). The values of p are denoted by 
figures near the curves. 

-3 -2 ., 3 
P/P, 

FIG. 1 b. Adsorption isotherms for surface with 
symmetrical distribution function with a maximum of 
distribution of adsorption sites with respect to heats 
of adsorption. Dependences of log 0 on log pip,.. The 
values of p are denoted by figures near the curves. 
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It can be seen that in the range 8 > 0.1 
the isotherms in log coordinates are linear 
only at sufficiently low temperatures 
(p s 0.1 or T G 0.1 g,/R). 

2. DIFFERENTIAL HEAT OF 
ADSORPTION-COVERAGE 

RELATIONSHIP FOR 
DISTRIBUTION FUNCTION (1) 

Here, we give the dependence of g, (dif- 
ferential heat of adsorption) on 8 and p/p, 
for the most important pressure range 
pu < P < pl only. 

A comparison of Eq. (13) (g, = 03) with 
the Clausius-Clapeyron equation shows 
that 

3. ACCURATE EQUATION 
OF NEGATIVE-POWER 

ISOTHERM 

M. I. Temkin (8) found that to the ex- 
ponential distribution (2) there corre- 
sponds the negative-power isotherm 

e = c - bpec” 

(c and b = constants). 

(18) 

This equation is obviously an approxi- 
mate one. 

The accurate equations of the isotherm 
corresponding to the site distribution func- 
tion (2) were found (9) by the method of 
analytical continuation of the function. 
These equations, however, can also be ob- 

gd- g1 -- 
g, gm 

PT 

+ 
sin PIT [ 

co~i~p~pT - 1 - In m (y] + (;)‘-p y (- l)n+l(3”-‘* 
n=1 

xL+(~)‘-~~(-,,n+1 (EJ-@ .& 
. (15) 

sin per 
n=1 

For p 4 1 and p/p, < 1 Eq. (15) reduce 
to Eq. 

g, = -g, *n 0 + gl (16) 

and for Al. s 1 and p/p, < 1 to equation. 

g,=g,+RT (l/(p- 1)). (17) 

Figure 2a exhibits calculated 
(gd/gm) - log 19 relationships obtained 
from Eqs. (15) and (13). It can be seen that 
the shape and position of the curves de- 
pend on the temperature. The degree of 
temperature dependence is quite sufficient 
for comparing theoretical curves with cal- 
orimetric data. 

tained from equations corresponding to the 
distribution function (1). To do this, it is 
sufficient to replace 8 by (I - e), p by p-l, 
pu by (pJ -l and pl by (p&l. Then the 
isotherm equation corresponding to the 
high-coverage range in the case of the dis- 
tribution function (1) will correspond to 
the low-coverage range in the case of the 
distribution function (2), and vice versa. 

For the low-coverage range (p < p,) 
we get 

e=l- 
[ 

F(l,p; CL + 1; --P/P,) 
I - L-1 

_ F(l,Pi P + 1: -P/P,) 
L- * 1 . (19) 

For most important middle pressure 
range pu < p < pl we get: 

B= * + (PIP- l))(PulP)F(l,l- p; 2 - p; -(pulp)) - (p&in or) (pulp)‘” 
1 -L-l 

+ F(l,Pc; 1 + p; -(p/pJ 
L-l . (20) 
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Here it is possible to obtain approximate 
equations similar to Eqs. (13) and (14). 
The equation (2 1) corresponding to the 
condition g, = ---co and the equation (2 la) 
corresponding to the condition g, = - 00 and 
p 9 pU may be considered the most impor- 
tant of them: 

e=l+P-l 
-&-- (P,/P)F ( 1,l -/.L; 2-/.&; 

PU E”n &” -- -y 
P 1 ( 1 sin ,ur p ’ (21) 

(Equation (2 1) can be represented 
graphically with the aid of the curves of 
Fig. la. To do this, lay off log (1 - 0) on 
the y-axis and log (p,/p) on the x-axis.) 

PU 0=1+& p 
( 1 

PQ-r PULL -~ - . (21a) 
( ) sin prr p 

For Al. < I and p % pu Eq. (2 la) obviously 
reduce to a negative-power equation (18). 
For high coverage (p > pl) we have 

P 
e=l+P-l 

(P,/P)F(l,l -pi 2 - /.L; --PJP) 
L-l 

_ (Pu/P)F(1,1 -/J; 2-/J.;-PulP) 
I - L-1 

(22) 

The calculated dependence of gd on 0 
and p,/p for the case of site distribution 
function (2) can be represented by the 
curves of Fig. 2a (for the middle pressure 
range and infinitely large lower limit 
g, = -w). 

In this case the value (glL - gd)/gm should 
be layed off on the y-axis and log (1 - 0) 
on the x-axis. 

4. THE ISOTHERMS CORRESPONDING 
TO DISTRIBUTION FUNCTIONS 

WITH MAXIMUM 

A symmetric or nonsymmetric site dis- 
tribution function of cites with a maximum 

can be obtained by combining Eqs. (1) 
and (2). 

(u) The nonsymmetric distribution func- 
tion. For g > g, (g, is the heat of adsorp- 
tion corresponding to the maximum of site 
distribution curve). 

N, = exp (-g/g,); p = RTIg,. (23) 

For g < g, 

N, = exp (g/d 1; p”’ = R Tl& 

(b) The symmetric function (g, = g&). 

N, = exp [-I g - gTl /g,l (24) 

The curves of the distribution functions 
(23) and (24) have sharp peaks at g = g, in 
contrast to the normal distribution curve. 
The distribution functions (23) and (24) 
however, enable one to evaluate accurate 
integration and obtain isotherm equations 
which make it possible to vary the posi- 
tions of the distribution maximum and 
limits over the heats of adsorption. 

Furthermore in this case it is possible to 
vary pressure and temperature from zero 
to infinity (of course, it is a mathematical 
possibility) and to find the corresponding 
values of the coverage and the differential 
heat of adsorption. 

The initial equation of isotherm, corre- 
sponding to the site distribution function 
(23) can be written as 

e = A (1 + z-l)-’ + B( 1 + z)-‘, (25) 

where A is Eq. (5); B is the initial equation 
of isotherm, corresponding to the site dis- 
tribution function (2) and 

g, exp ((gr - sl)/gm) 
’ = sh exp ((8, - g,)/gA) ’ 

In the case of symmetry (E.L = p1 and g, - 
g, = g, - gl) z, = 1. Then we find the solu- 
tion as: 

ifp < pu 

O=A,(l+~~l)~l+B1(l+z)-‘; (26) 

ifp < P < pr 

H=Az(l +z-l) t&(1 +z))‘; (26a) 
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if pr < P < pl 

8=&(1 +z-‘)-‘+&(I +z)-‘; (26b) 

ifp > m 

O=A,(l +z-‘)-‘+Bs(l +zj-‘, (26c) 

where AI, AZ, A3 are the isotherm equa- 
tions corresponding to the distribution 

10g e 

E 

P 
3 

-1 

FIG. 2a. Heats of adsorption-coverage rela- 
tionships for surface with exponential distribution of 
sites with respect to heats of adsorption. Dependence 
of (gd - gJ/g, on log 0 correspond to distribution 
function (1); Dependences of (g, - gd)/gm on log 
(1 -f3) correspond to distribution function (2). The 
values of p are denoted by figures near the curves. 

2 

1 

< 
a 

5 
0 

I I I 

-2 -1 
log 8 

FIG. 2b. Heats of adsorption-coverage 
tionships in the case of symmetrical distribution 

rela- 
func- 

tion with a maximum. Dependence of (gd - g,)/g, on 
log 8. The values of p are denoted by figures near the 
curves. 

function (l), B1, Bz, B3 are the isotherm 
equations corresponding to the distribution 
function (2). 

AI denotes the isotherm equation in the 
range p < pu, A2 and B1, the isotherm 
equations in the range of p < pr, A3 and 
B2, the isotherm equations in the range 
of pr < p < pl, and BB, the isotherm equa- 
tion in the range p > pl. 

Figure 1 b shows isotherms for the most 
important pressure range in the case of 
symmetric distribution with a maximum 
and of infinitely large limits (g, = +m, g[ = 
-m) . The curves were calculated from Eq. 
(26a) and (26b), where A, is the isotherm 
described by Eq. (13), A3 is the isotherm 
described by Eq. (8) for the case of L = m, 
B, is the isotherm described by Eq. (20) 
for the case of L = CQ, B, is the isotherm 
described by Eq. (2 la). A comparison of 
the shapes of the isotherms in Fig. 1 b and 
those in Fig. la does not reveal any evi- 
dent difference between them. The dif- 
ferences in the nature of the heat of ad- 
sorption-coverage relationship are more 
visible. 

Comparing Eq. (26a) and Eq. (26b) with 
the Clausius-Clapeyron equation we can 
find the gd - p relation (by analogy with 
Eq. (15)) and calculate the gd/& - log 13 
dependence. This dependence for the case 
infinitely large limits (g, = +a, and gL = 
-m) is given in Fig. 2b. 

The difference between the curves in 
Fig. 2a and 2b in the range of relatively high 
coverages is obvious. 

5. LIMIT TRANSITIONS OF 
ISOTHERM AS 

g,-+mAND T+O 

Expanding the hypergeometric functions 
of the above isotherm equations into infi- 
nite series one can consider in detail a 
transition of them into Temkin’s quasi- 
logarithmic form (12) 0 = RT/(g, - gl> 
[ln(l+p/p,)-ln(~+~l~,)lasg,~~ 
and into equation 



8=p ln (l+plh) 
[ L-l 

-In (1 +dm) 
1 -L-l 1 (27) 

as T+ 0. 
It is possible these transitions are a cause 

of prevalence of isotherm logarithmic 
forms. 

CONCLUSION 

The results obtained confirm that it is far 
from easy to establish the nature of surface 
heterogeneity from adsorption data. Simul- 
taneous measurements of adsorption 
isotherms and determination of heats of 
adsorption by the calorimetric method in 
temperature ranges corresponding not only 
to p < I but also to Al. > 1 would be of 
great interest. 

EQUATIONS OF ISOTHERMS 239 

REFERENCES 

1. ZELDOVITCH, J. B., Acia Physicochimica USSR 
1, 961 (1935). 

2. TEMKIN, M. I., AND LEVITCH, V. E., Zh. Fiz. 
Khim. 20, 1441 (1946). 

3. HALSEY, G. D., AND TAYLOR, H. S., J. Chrm. 
Phys. 15, 624 (1947). 

4. HALSEY, G. D., Advan. Catal. Relat. Subj. 4, 
259 (1952). 

5. SIPS, R., J. Chem. Phys. 16, 490 (1948). 
6. SIPS, R., J. Chem. Phys. 18, 1024 (1950). 
7. RUDNITSKY, L. A., AND ALEKSEYEV, A. M., 

Dokl. Acad. Nauk SSSR 206, 1169 (1972). 
8. TEMKIN, M. I., Kinet. CataI. USSR 5, 1005 

(1967). 
9. RUDNITSKY, L. A., AND ALEKSEYEV, A. M., Zh. 

Fiz. Khim. 48, 407 (1974). 
/O. “Tables of Integral Transforms,” Vol. 1, p. 310. 

McGraw-Hill, New York, 1954. 
I I. “Higher Transcendental Functions,” Vol. 1. 

McGraw-Hill, New York, 1953. 
12. TEMKIN, M. I., Zh. Fiz. Khim. 15, 296 (1941). 


